Generalized Jordan N-Derivations of Unital Algebras with Idempotents
نویسندگان
چکیده
منابع مشابه
Characterization of Pseudo n-Jordan homomorphism Between unital algebras
Let A and B be Banach algebras and B be a right A-module. In this paper, under special hypotheses we prove that every pseudo (n+1)-Jordan homomorphism f:A----> B is a pseudo n-Jordan homomorphism and every pseudo n-Jordan homomorphism is an n-Jordan homomorphism
متن کاملJordan Derivations and Antiderivations of Generalized Matrix Algebras
Let G = [ A M N B ] be a generalized matrix algebra defined by the Morita context (A,B,A MB,B NA,ΦMN ,ΨNM) . In this article we mainly study the question of whether there exist the so-called “proper” Jordan derivations for the generalized matrix algebra G . It is shown that if one of the bilinear pairings ΦMN and ΨNM is nondegenerate, then every antiderivation of G is zero. Furthermore, if the ...
متن کاملNearly Generalized Jordan Derivations
Let A be an algebra and let X be an A-bimodule. A C−linear mapping d : A → X is called a generalized Jordan derivation if there exists a Jordan derivation (in the usual sense) δ : A → X such that d(a) = ad(a) + δ(a)a for all a ∈ A. The main purpose of this paper to prove the Hyers-Ulam-Rassias stability and superstability of the generalized Jordan derivations.
متن کاملJordan ∗−homomorphisms between unital C∗−algebras
Let A,B be two unital C∗−algebras. We prove that every almost unital almost linear mapping h : A −→ B which satisfies h(3uy + 3yu) = h(3u)h(y) + h(y)h(3u) for all u ∈ U(A), all y ∈ A, and all n = 0, 1, 2, ..., is a Jordan homomorphism. Also, for a unital C∗−algebra A of real rank zero, every almost unital almost linear continuous mapping h : A −→ B is a Jordan homomorphism when h(3uy + 3yu) = h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics
سال: 2021
ISSN: 2314-4785,2314-4629
DOI: 10.1155/2021/9997646